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Abstract—This paper presents an Automated Change Detection 
and Classification (ACDC) System, developed by the Naval 
Research Laboratory (NRL) and the Naval Oceanographic 
Office (NAVOCEANO), which aids analysts in performing 
change detection in real-time (RT) by co-registering new and 
historical imagery and using automated change detection 
algorithms that suggest imagery changes. In this paper, ACDC-
RT components are described and results given from a recent 
change detection experiment. 
 

Index Terms—Acoustic signal detection, Computer aided 
analysis, Real time systems, and Sonar signal processing 
 

I. INTRODUCTION 
N support of military Mine Warfare (MIW) clearance 
operations for safe vessel passage, analysts perform change 
detection by visually comparing historical, high-resolution, 

sidescan sonar imagery (SSI) stored in a database with 
recently collected SSI to attempt to identify newly placed 
objects (“contacts”). Any new contacts not successfully 
matched with historical ones are flagged for investigation. 

The Navy requires a real-time change detection and 
classification system. This paper presents the Automated 
Change Detection and Classification – Real-Time System 
(ACDC-RT) developed by the Naval Research Laboratory 
(NRL) and Naval Oceanographic Office (NAVOCEANO) to 
assist change detection analysts by co-registering new imagery 
with historical, over the same area, and using automated 
algorithms to suggest possible changes between the two 
imagery sets (i.e., new contacts on the seafloor). ACDC-RT 
integrates Computer-Aided Detection, Classification, Search, 
and Feature-matching functions previously developed by 
NRL.  

Figure 1 shows the two main ACDC-RT displays:  a time-
based waterfall display of SSI as it is being collected (top) and 
a geo-registered waterfall display of historical SSI over the 
same area (bottom). ACDC-RT algorithms detected a mine-
like contact in the RT SSI (inset box on top) and matched it 
with the same contact observed in the past (inset box on the 
bottom). 

 

 
Fig. 1. View of the two main ACDC-RT co-registered displays: real-time SSI 
(top) and historical SSI (bottom) over the same area. The boxes in both 
displays contain the same contact, automatically detected by ACDC-RT and 
observed in both surveys. Insets provide zoomed-in views of the contact. 

 
 

 
Fig. 2. Close up view of the same contact observed in the past (left) and 
present (right). Note that the contact in the historical SSI (right) is not in the 
center of the box. This is due to position error between historical and RT SSI. 
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II. POSITION ERROR 
Close-up views in Figure 2 show the position of the contact 

in the historical SSI (left) is slightly different than in the 
newly collected SSI (right), due to position errors inherent 
within and between the two datasets. This is a common 
problem with submerged sonars, since the position of the 
sonar must be estimated because Global Positioning Systems 
(GPS) do not work underwater. Instead, the position of cable-
towed transducers is calculated from the GPS location of the 
surface vessel by using a cable layback model or acoustic 
tracking system [5], [9]. 

Bottom objects and features can also change and migrate 
over time due to ocean currents and burial. Even when the 
objects are stationary, one of the biggest issues with sidescan 
is position error, often observed to be 15 m or greater during 
actual surveys [9]. The center latitude/longitude position of 
each scan line in the UNISIPS file includes position error due 
to GPS error and error from the cable layback model. Because 
SSS is usually towed through the water with a cable attached 
to a tow platform, large positioning errors can be introduced 
[5], [9]. 

To correct this problem, the position of the tow platform, is 
first measured via GPS, and then the position of the 
submerged sonar, called the fish, is computed by taking into 
account the length of the cable. If the GPS antenna is not 
located where the tow cable attaches to the platform, the 
“antenna offset” must be included in the calculation. If one 
assumes the cable is a straight line, cable length can be easily 
computed (Figure 3). In reality, the cable is not perfectly 
straight, and a more complicated equation, called a cable 
layback model, is sometimes used (Figure 4). 

  

 
Fig. 3. In this depiction, the cable is assumed to be straight and directly behind 
the ship. An estimation of the position of the fish can easily be determined 
because the length of the cable, the depth (below the surface) of the fish, and 
the GPS offset is known.  

III. ACDC COMPONENTS 
Over the past few years, NAVOCEANO has developed 

software tools and applications to aid analysts in performing 
manual change detection more efficiently, thus reducing the 
amount of time needed to identify new bottom objects. NRL 
scientists, working closely with NAVOCEANO, have 
developed components of a (non-RT) ACDC system, 

including a Computer-aided Detection (CAD) algorithm, 
Completion algorithm, Computer-aided Search (CAS) 
algorithm, and Feature-Matching (FM) algorithm. 

The final version of ACDC will aid analysts in detecting 
seafloor features in SSI, classifying and cataloging these 
features, and comparing them with features “seen” in 
historical SSI, to determine if the features have moved or are 
new. A prototype ACDC has been shown to successfully 
reduce the time to perform change detection, compared with 
manual methods, while producing similar and more consistent 
results [2]. The key components of ACDC are briefly 
discussed below. 
 

 
Fig. 4. Uncertainty in the estimation of the fish position is introduced by the 
fact that the tow cable is not perfectly straight and the fish is not directly 
behind the ship. 
 

A. CAD Algorithm 
There are a variety of digital change detection techniques 

including image differencing [8], [12], [13], image regression 
[4], [10], [11], and post-classification comparison. The post-
classification technique compares two images that were 
classified independently [3]. NRL has applied this technique 
to SSI and developed a unique CAD algorithm capable of 
detecting and extracting snippets from historical and recently 
collected SSI so comparisons can be made later. The CAD 
algorithm utilizes geospatial bitmaps (GBs) to run in real-time 
one scan-line at a time [1]. 

B. Completion Algorithm 
Following CAD, the snippets are sent to a classification 

function, in which NRL’s Completion algorithm attempts to 
determine if the snippet contains a mine-like contact, by 
estimating attributes such as size and shape and computing a 
confidence measure. The completion process is not fully 
automated and prompts the operator to make a final judgment 
when the confidence measure falls below a set threshold. 
Figure 5 shows an example of two snippets produced by the 
CAD algorithm. The Completion algorithm filters the snippet 
and extracts the shadow. The algorithm then uses the shadow 
to “complete” the bright spot based on known information 
such as sonar altitude and the contact’s distance from nadir. 
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Fig. 5. The image on the left is a sidescan-imagery snippet of a mine-like 
contact. The middle image shows the results after an adaptive filter was 
applied to the snippet. The complete shadow of the contact was extracted from 
the snippet, but the bright spot was not. The completion algorithm uses the 
shadow to “complete” the bright spot, shown in the image on the right. 
Attributes, such as height, length and width, are then determined from the 
“completed” image. 
 

C. CAS Algorithm 
The location of each completed contact is then passed to a 

CAS algorithm, which queries a database of historical imagery 
(maintained at NAVOCEANO) and finds all the historical 
contacts that are “spatially close” to the newly detected 
contact, based on an estimate of position error. One factor that 
can greatly reduce the accuracy of post-classification change 
detection is inaccurate geometric registration between the two 
images [3], [7], [10], [11]. In most cases, the accurate geo-
registration of SSI is impossible due to inherent position error. 
The CAS algorithm uses GBs and a modified quad tree 
structure to accurately and efficiently perform geospatial 
searches. 

 
Fig. 6. The CAS algorithm determined that the historical contacts, H3 and 
H10, could be the new contact. H3 was selected because its error ellipse 
overlaps the error ellipse of N1. H10 was selected because its actual location 
falls within the error ellipse of N1. 
 
 

Figure 6 shows a new contact, N1, with its associated 
position error ellipse. In this example, the CAS algorithm 
determined that historical objects H3 and H10 (observed in 
the past) may be N1 because the H3 ellipse overlaps the N1 
ellipse, and H10 lies within the N1 error ellipse. 

D. FM Algorithm 
ACDC then tries to automatically “match” one of the 

historical contacts with the new contact by using a Feature 
Matching (FM) algorithm. New objects that are not matched, 
i.e., not in the database, are identified as “new objects” 
(change detection). The FM algorithm uses a wavelet network, 

which in the past has proven to work well at matching features 
and is used extensively in face recognition, for example [6]. 

 

IV. CHANGE DETECTION EXPERIMENT 
ACDC-RT was tested and demonstrated during a recent 

change detection experiment coordinated by the Johns 
Hopkins University Applied Physics Laboratory (JHU/APL). 
The survey test area consisted of five 1-nautical mile (nmi) 
lines in shallow water (20 meters) and five 2-nmi lines in deep 
water (55 meters). The survey lines were spaced to allow for 
100% overlap. Each of three commercially available sidescan 
sonars were towed to collect data for baseline surveys 
(representing historical imagery) in both shallow and deep 
water, and existing contacts were detected and their locations 
saved in an historical Master Contact Database, maintained by 
NAVOCEANO. This database warehouses thousands of 
features detected from SSI worldwide since the early 1990’s. 

Ten new contacts representing mineshapes were then 
placed on the seafloor in the survey area: five in deep water 
and five in shallow water. The positions of the newly placed 
mineshapes were unknown to the change detection testing 
participants. The goal of the experiment was to correctly 
identify at least 50% of the newly placed mineshapes. Each of 
the three sidescan sonars conducted change detection surveys 
in the shallow and deep water areas. Analysts ran ACDC-RT 
concurrently with the change detection surveys and identified 
potential new targets. 

Included in the placed mineshapes were two plywood boxes 
and two lead pipes. ACDC-RT analysts missed one of each 
and found one of each; therefore, it is probably not the 
characteristics (size, shape, or material) of the missed 
mineshapes that made them undetectable. Instead, it was more 
likely the fact that the missed objects had been placed at the 
edge of the survey area, over which only one survey line of 
imagery was collected, as opposed to overlapping lines inside 
the survey area. 

Sidescan analysts using ACDC-RT were able to identify 
more than 50% of the new mineshapes placed in the test area 
after the baseline surveys. This was accomplished with all 
three sidescan sonar systems. Analysts using ACDC-RT were 
able to find 80% of the newly placed mineshapes with one of 
the sonars; the only two missed shapes were those at the 
survey’s edge, discussed above. The baseline snippets and the 
change detection snippets and pictures for some of the 
correctly identified mineshapes are shown in figure 7. 

V. CONCLUSION 
Further funding is required to continue developing and 

testing ACDC-RT. One key missing component is an Area-
Matching (AM) algorithm, which would be capable of 
performing automated scene matching between historical and 
newly collected SSI. This could reduce false alarms and 
increase the likelihood that a contact observed in the past is 
the same contact seen in the present, if it could be shown that 
features surrounding the contact also match. 
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Fig. 7. This figure shows examples of two contacts (and associated snippets) 
that were correctly determined to be new objects placed in the survey area 
after the baseline survey. The contacts, a cement-filled bucket and plywood 
box, were clearly not there at the time of the baseline survey (i.e., they are 
absent in the baseline imagery snippets). 
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